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Abstract

Discrepancy is a versatile bound in communication com-
plexity which can be used to show lower bounds in ran-
domized, quantum, and even weakly-unbounded error mod-
els of communication. We show an optimal product theo-
rem for discrepancy, namely that for any two Boolean func-
tionsf, g, disc(f ⊕ g) = Θ(disc(f)disc(g)). As a conse-
quence we obtain a strong direct product theorem for distri-
butional complexity, and direct sum theorems for worst-case
complexity, for bounds shown by the discrepancy method.
Our results resolve an open problem of Shaltiel (2003)
who showed a weaker product theorem for discrepancy
with respect to the uniform distribution,discU⊗k(f⊗k) =
O(discU (f))k/3. The main tool for our results is semidefi-
nite programming, in particular a recent characterization of
discrepancy in terms of a semidefinite programming quan-
tity by Linial and Shraibman (2006).
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1 Introduction

A basic question in complexity theory is how the diffi-
culty of computingk independent instances of a functionf
scales with the difficulty of computingf . If a randomized
algorithm forf usesc units of resources and is correct with
probabilityp, then an obvious approach to computingk in-
dependent instances off would be to independently run the
algorithm on each instance. This approach useskc many
resources and achieves success probabilitypk. A strong
direct product theorem states that this naive algorithm is
essentially the best possible—any algorithm usingO(kc)
many resources will succeed in correctly computingk in-
dependent instances off with probability at mostpk. One
may also consider a variant of this problem where instead
of computing the vector of solutions(f(x1), . . . , f(xk)),
we just want to knowf(x1)⊕· · ·⊕ f(xk). Notice that here
one can always succeed with probability at least1/2. Here
one ideally wishes to show that if to computef with suc-
cess probability1/2 + ε/2 requiresc resources, then even
with O(kr) resources any algorithm computing the parity
of k independent copies off will have success probability
at most1/2 + εk/2. Such a result is known as a strong
XOR lemma. Taking a somewhat dual view, a direct sum
theorem shows thatΩ(kc) resources are required to achieve
the same success probability in computingk independent
instances of a function as can be done withc resources on
one copy off .

Besides being a very natural question, such product the-
orems have many applications in complexity theory: as an
approach to hardness amplification useful in the construc-
tion of pseudorandom generators and relating worst-case
hardness to average-case hardness; to improving the sound-
ness parameter of an interactive proof system via parallel
repetition [21]; to time-space tradeoffs [10, 2]; and even as
an approach to separating complexity classes [8].



Strong direct product theorems are known for certain
models of computation and functions, for example for the
quantum query complexity of symmetric functions [10, 2].
For other models like circuit complexity, however, we only
have much weaker results. Probably the most famous prod-
uct theorem is Yao’s XOR lemma, which states that if any
circuit of sizes errs with non-negligible probability when
computingf , then any circuit of some smaller sizes′ < s
will have very small advantage over random guessing when
computingF (x1, . . . , xk) =

⊕
i f(xi). Notice that here

the algorithm actually gets fewer resources to computek-
copies off than it did for a single instance.

While proving strong product results for Boolean circuits
seems quite far off, a good testing grounds for our intuition
about such theorems is communication complexity. Such a
project was initiated in a systematic way by Shaltiel [24].
Shaltiel showed a general counterexample where a strong
direct product theorem does not hold for average-case com-
plexity. He further showed that bounds by the discrepancy
method under the uniform distribution, a common way to
show lower bounds on average-case communication com-
plexity, do obey a XOR lemma. He left as an open question
if an XOR lemma or direct product theorem also holds for
discrepancy under arbitrary distributions.

We answer this question here and tighten Shaltiel’s re-
sult to give a product theorem optimal up to a constant mul-
tiplicative factor. Namely, we show thatdisc(f ⊕ g) =
Θ(disc(f)disc(g)) for any Boolean functionsf, g. Further-
more, we show that for functions of the formf ⊕ g, the
discrepancy bound is realized, up to a constant multiplica-
tive factor, by a distribution of the formP ⊗Q, whereP is
a distribution overf andQ is a distribution overg, and⊗
denotes tensor product.

As a consequence, we obtain a strong XOR lemma for
distributional complexity bounds shown by the discrepancy
method—If ac-bit protocol has correlation at mostw with
f , as shown by the discrepancy method, then akc-bit pro-
tocol will have correlation at mostO(wk) with the parity
of k independent copies off . Via a reduction of Viola and
Wigderson which shows quite generally that XOR lemmas
imply direct product theorems, we also obtain a strong di-
rect product theorem for bounds shown by the discrepancy
method—If ac-bit protocol has success at mostw on f , as
shown by the discrepancy method, then akc/3-bit proto-
col will have success at mostO(wk) correctly computingk
independent instances off .

Klauck [9] has shown that the discrepancy bound charac-
terizes the model of weakly-unbounded error complexity, a
communication complexity version of the complexity class
PP (formal definition given below in Section 2.2). As dis-
crepancy characterizes this class, here we are able to obtain
an unconditional direct sum theorem for this model of com-
putation.

The main tool for our results is semidefinite program-
ming, in particular a recent characterization of discrepancy
in terms of a semidefinite quantityγ∞2 by Linial and Shraib-
man [16]. Linial and Shraibman also introduce a bounded-
error version of the same semidefinite quantity, known as
γα
2 , which can be used to show lower bounds on bounded-

error randomized and quantum communication complexity.
It remains an interesting open question if a product theo-
rem also holds for this quantity. Asγα

2 is able to prove an
Ω(
√

n) lower bound on the quantum communication com-
plexity of disjointness, such a theorem would reprove a re-
sult of Klauck,Špalek, and de Wolf [10].

2 Preliminaries

In this section we will introduce some basic matrix nota-
tion, our main quantity of interest i.e. the discrepancy and
its relation to communication complexity. We also intro-
duce theγ2 norm and its variants which we use to prove our
main result.

2.1 Matrix preliminaries

We restrict ourselves to matrices over the real numbers.
We useAT to denote the transpose of the matrixA. For real
matricesA,B we use≤ to refer to entrywise comparison of
matrices, that isA ≤ B iff A[i, j] ≤ B[i, j] for all (i, j).
For a scalarc, we sometimes use the shorthandA ≥ c to
indicate that all entries ofA are at least as large asc. Besides
entry-wise comparison we will also make use of the positive
semidefinite partial ordering, where we sayA � B if A−B
is symmetric andxT (A − B)x ≥ 0 for all vectorsx. We
denote tensor product by⊗, Hadamard (entrywise) product
by ◦ and inner product by〈·, ·〉. We let‖A‖1 be the sum of
the absolute values of the entries ofA.

For a symmetric matrixA, let λ1(A) ≥ λ2(A) ≥
. . . ≥ λn(A) denote the eigenvalues ofA. Let σi(A) =√

λi(AT A) be theith singular value ofA. We make use
of a few matrix norms. The Frobenius norm ofA is the`2
norm ofA thought of as a vector—that is

‖A‖F =
√∑

i,j

A[i, j]2 .

Notice also that‖A‖2
F = Tr(AT A) =

∑
i σ2

i (A). We also
use the trace norm,‖A‖tr =

∑
i σi(A). Finally, we denote

the spectral norm as‖A‖ = σ1(A).
Since the singular values of the matrixA ⊗ B are

σi(A)σj(B) whereσi(A), σj(B) range over the singular
values ofA and B respectively, all three of these matrix
norms are multiplicative under tensor products.

Finally, we make use of the following simple fact



Fact 1. For any matricesA,B, C, D, whereA,C are of the
same dimension andB,D are of the same dimension,

(A⊗B) ◦ (C ⊗D) = (A ◦ C)⊗ (B ◦D) .

2.2 Communication complexity and dis-
crepancy

Let X, Y be finite sets andf : X × Y → {0, 1} be a
Boolean function. We associate withf a |X|-by-|Y | sign
matrixMf known as the communication matrix.Mf is the
|X|-by-|Y | matrix where

Mf [x, y] = (−1)f(x,y).

We will identify the communication matrix with the func-
tion, and use them interchangeably.

Discrepancy is defined as follows:

Definition 2 (Discrepancy with respect toP ). Let P be a
probability distribution on the entries ofMf . Discrepancy
with respect to the distributionP is defined as:

discP (Mf ) = max
x∈{0,1}|X|

y∈{0,1}|Y |

∣∣xT (Mf ◦ P )y
∣∣ .

The maximum absolute value of a bilinear form over
Boolean vectors is known as the cut norm,‖ · ‖C , thus it
can be equivalently stated thatdiscP (A) = ‖A ◦ P‖C . We
will sometimes use this view in our proofs as our product
results hold more generally for the cut norm, and not just
discrepancy.

For showing lower bounds in communication complex-
ity, one wishes to show that the discrepancy is small. We
will let disc(A) without a subscript refer todiscP (A) under
the “hardest” distributionP .

Definition 3 (General discrepancy). The discrepancy of a
sign matrixMf is defined as

disc(Mf ) = min
P

discP (Mf ) ,

where the minimum is taken over all probability distribu-
tionsP .

We will first see how discrepancy can be applied to com-
munication complexity in the distributional model. The cost
in this model is defined as follows:

Definition 4 (Distributional complexity). Letf : X×Y →
{0, 1} be a Boolean function andP a probability distribu-
tion over the inputsX ×Y . For a fixed error rateε ≥ 0, we
defineDε

P (f) to be the minimum communication of a deter-
ministic protocolR whereE(x,y)←P [R(x, y) 6= f(x, y)] ≤
ε.

The connection to discrepancy comes from the well
known fact that a deterministicc-bit communication proto-
col partitions the communication matrix into2c many com-
binatorial rectangles. (See Kushilevitz and Nisan [12] for
this and other background on communication complexity.)
LetP be a probability distribution,R be a deterministic pro-
tocol, and letR[x, y] ∈ {−1, 1} be the output ofR on input
(x, y). The correlation ofR with f under the distributionP
is

CorrP (Mf , R) = E(x,y)←P [R[x, y]Mf [x, y]] .

We then define the correlation withc-bit protocols as

Corrc,P (Mf ) = max
R

CorrP (Mf , R) ,

where the max is taken over all deterministicc-bit proto-
cols. With these definitions, it is straightforward to show
the following:

Fact 5.
Corrc,P (Mf ) ≤ 2cdiscP (Mf )

We can turn this equation around to get a lower bound
on Dε

P (f). A protocol which has probability of error
at most ε has correlation at least1 − 2ε with f , thus
Dε

P (f) ≥ log 1/((1− 2ε)discP (Mf )). This, in turn, shows
how discrepancy can be used to lower bound randomized
communication complexity. LetRε(f) be the minimum
communication cost of a randomized protocolR such that
Pr[R[x, y] 6= f(x, y)] ≤ ε for all x, y. Then, as by
Yao’s principle [28]Rε(f) = maxP Dε

P (f), we find that
Rε(f) ≥ log 1/((1− 2ε)disc(Mf )).

Discrepancy is even more widely applicable to prov-
ing lower bounds on worst-case complexity. Kremer [11]
shows that discrepancy can be used to lower bound quantum
communication with bounded-error, and Linial and Shraib-
man [16] extend this to show the discrepancy bound is
valid even when the communicating parties share entangle-
ment. Klauck [9] shows that discrepancy characterizes, up
to a small multiplicative factor, the communication cost of
weakly unbounded-error protocols. We state this latter re-
sult for future use.

Definition 6 (Weakly unbounded-error). Consider ac-bit
randomized communication protocolR for a functionf ,
and denoteε(R) = minx,y (Pr[R(x, y) = f(x, y)]− 1/2).
The weakly unbounded-error cost ofR is UPCR(f) =
c + log(1/ε(R)). The weakly unbounded-error cost off ,
denotedUPC(f), is the minimal weakly unbounded-error
cost of a randomized protocol forf .

Theorem 7 (Klauck). Let f : {0, 1}n × {0, 1}n → {0, 1}
be a Boolean function. Then

UPC(f) ≥ log(1/disc(f))−O(1)
UPC(f) ≤ 3 log(1/disc(f)) + log n + O(1) .



The lower bound can be seen immediately from Fact 5,
while the upper bound requires more work. Forster et al.
[7] show a similar result characterizingUPC complexity in
terms of a notion from learning theory known as the max-
imal margin complexity. Linial and Shraibman later show
that discrepancy and maximal margin complexity are equiv-
alent up to a constant factor.

2.3 Definitions of γ2

The quantityγ2 was introduced in [14] in a study of com-
plexity measures of sign matrices. We give here a leisurely
introduction to this quantity, its relatives, and their many
equivalent forms.

2.3.1 Motivation

Matrix rank plays a fundamental role in communication
complexity. Many different models of communication com-
plexity have an associated rank bound which is usually the
best technique available for showing lower bounds. For
deterministic complexity,D(f) ≥ log rk(Mf ), and the
long-standing log rank conjecture asserts that this bound is
tight up to polynomial factors. For randomized and quan-
tum communication complexity, one becomes concerned
not with the rank of the communication matrix, but of ma-
trices close to the communication matrix. For 0/1-valued
matrices the usual notion of “closeness” here is`∞ norm,
but as we are working with sign matrices we take the fol-
lowing notion of approximation rank:

rkα(Mf ) = min{rk(M) : 1 ≤ M ◦Mf ≤ α} .

Then one hasRε(f) ≥ Qε(f) ≥ 1
2 log rkα(Mf ) for

ε = α−1
2α and whereRε(f) is the private coin randomized

complexity off andQε(f) the quantum complexity off
without shared entanglement [3]. Asε → 1/2 one obtains
unbounded-error complexity, where one simply has to ob-
tain the correct answer with probability strictly greater than
1/2. This class is characterized up to one bit by the log of
sign rank, the minimum rank of a matrix which agrees in
sign everywhere withMf [20].

In the case of approximation rank and sign rank, a diffi-
culty arises as such rank minimization problems are difficult
to solve. While we do not know if approximation rank it-
self is NP-hard, one can show this for closely related rank
minimization problems. A (now) common approach to deal
with NP-hard problems is to consider a semidefinite pro-
gramming relaxation of the problem. The quantityγ2(Mf )
can very naturally be viewed as a semidefinite relaxation of
rank.

As the rank of a matrix is equal to the number of non-
zero singular values, it follows from the Cauchy-Schwarz
inequality that

‖A‖2
tr

‖A‖2
F

≤ rk(A) .

A problem with this bound as a complexity measure is
that it is not monotone—the bound can be larger on a sub-
matrix ofA than onA itself. As taking the Hadamard prod-
uct of a matrix with a rank one matrix does not increase its
rank, a way to fix this problem is to consider instead:

max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖2
tr

‖A ◦ vuT ‖2
F

≤ rk(A) .

WhenA is a sign matrix, this bound simplifies nicely—for
then,‖A ◦ vuT ‖F = ‖u‖‖v‖ = 1, and we are left with

max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖2
tr ≤ rk(A) .

This quantity turns out to be exactlyγ2(A), as we shall now
see.

2.3.2 The many faces ofγ2

The primary definition ofγ2 given in [14] is

Definition 8.

γ2(A) = min
X,Y :XY =A

r(X) c(Y ) ,

wherer(X) is the largest̀ 2 norm of a row ofX and
similarly c(Y ) is the largest̀2 norm of a column ofY .

We now see that this quantity is the same as the one just
discussed. Note that this equivalence holds foranymatrix
A, not just a sign matrix.

Theorem 9. LetA be anm-by-n matrix. Then

γ2(A) = max
Q:‖Q‖≤1

‖A ◦Q‖ = max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖tr .

Proof. We obtain this by writingγ2 as a semidefinite pro-
gram and dualizing. For semidefinite programming we nec-
essarily need to work with matrices which are symmetric,
yet the matrixA might not even be square. Fortunately,
there is a simple trick to deal with this. This trick is so use-
ful that we devote some notation to it. For anm-by-n matrix
M , we letM̂ be the(m + n)-by-(m + n) be a symmetric
matrix which is the “bipartite version” ofM . Namely,

M̂ =
[

0 M
MT 0

]
,

We will also need an auxiliary matrixF = Ĵm,n where
Jm,n is them-by-n matrix all of whose entries are equal to
one.



With these definitions in hand, one can see thatγ2 is
equivalent to the following program:

min η

X[i, i] ≤ η for all i

X � 0

X ◦ F = Â

HereX � 0 means theX is positive semidefinite. Dual-
izing this program we obtain:

max 〈Q, Â〉 (1)

‖α‖1 = 1 (2)

diag(α) � Q (3)

Q ◦ F = Q (4)

α ≥ 0 (5)

As diag(α)−Q � 0, it follows that if any entryαi = 0
then the corresponding row and column ofQ must be all
zero. As we can then simply delete this row and column
without changing the value of the program, we may assume
without loss of generality thatα > 0.

In light of this observation, we can bring this program
into a particularly nice form by lettingβ[i] = 1/

√
α[i], and

Q′ = Q ◦ ββT . Then the conditionα � Q can be rewritten
asI � Q′. AsQ′◦F = Q′, the spectrum ofQ′ is symmetric
about zero and so we can in fact concludeI ±Q′ � 0. This
can be nicely rewritten as‖Q′‖ ≤ 1. Lettingγ[i] =

√
α[i],

the objective function then becomes

〈Q, Â〉 = 〈Q′ ◦ γγT , Â〉 = γT (Q′ ◦ Â)γ .

The conditionTr(α) = 1 means thatγ is a unit vector. Asγ
is otherwise unconstrained, we obtain the first equivalence
of the theorem:

γ2(A) = max
Q

‖Q ◦A‖
‖Q‖

This shows thatγ2 is equivalent to a quantity known in
the matrix analysis literature as theHadamard product op-
erator norm[18]. The duality of the spectral norm and trace
norm easily gives that this is equivalent to the Hadamard
product trace norm:

γ2(A) = max
Q

‖Q ◦A‖tr

‖Q‖tr

One can further show that the maximum in this expression
will be obtained for a rank-one matrixQ:

γ2(A) = max
u,v:‖u‖=‖v‖=1

‖A ◦ vuT ‖tr

The fact that(γ2(A))2 ≤ rk(A) implies its usefulness
for communication complexity:

Theorem 10(Linial-Shraibman [16]). Let f be a Boolean
function andMf [x, y] = (−1)f(x,y). Then

2 log γ2(Mf ) ≤ D(f) .

2.3.3 Dual norm ofγ2

The norm dual toγ2 will also play a key role in our study of
discrepancy. By definition of a dual norm, we have

γ2(A) = max
B:γ∗2 (B)≤1

〈A,B〉 .

Since the dual norm is uniquely defined, we can read off
the conditions forγ∗2 (B) ≤ 1 from Equations (2)–(5) in the
formulation ofγ2(A). This tells us

γ∗2 (B) = min
α:α≥0

{
1
2
(1T α) : diag(α)− B̂ � 0

}
(6)

We can interpret the value of this program as follows:

Theorem 11.

γ∗2 (B) = min
X,Y

XT Y =B

1
2
(
‖X‖2

F + ‖Y ‖2
F

)
= min

X,Y

XT Y =B

‖X‖F ‖Y ‖F ,

where the min is taken overX, Y with orthogonal columns.

Proof. Let α be the optimal solution to (6). Asdiag(α) −
B̂ � 0, we have a factorizationdiag(α) − B̂ = MT M .
Write M as

M =
[

X Y
]

.

Then we see thatXT Y = −B and the columns ofX, Y
are orthogonal aŝB is block anti-diagonal. The value of the
program is simply(1/2)(‖X‖2

F + ‖Y ‖2
F ).

In the other direction, forX, Y such thatXT Y = −B,
we define the vectorα as α[i] = ‖XT

i ‖2 if i ≤ m and
α[i] = ‖Yi−m‖2 otherwise. A similar argument to the
above shows thatdiag(α)− B̂ � 0, and the objective func-
tion is 1

2

(
‖X‖2

F + ‖Y ‖2
F

)
.

To see the equivalence between the additive and multi-
plicative forms of the bound, notice that ifX, Y is a feasi-
ble solution, then so iscX, (1/c)Y for a constantc. Thus
we see that in the additive form of the bound, the optimum
can be achieved with‖X‖2

F = ‖Y ‖2
F , and similarly for the

multiplicative form. The equivalence follows.

2.3.4 Approximate versions ofγ2

To talk about randomized communication models, we need
to go to an approximate version ofγ2. Linial and Shraibman
[16] define



Definition 12. LetA be a sign matrix, andα ≥ 1.

γα
2 (A) = min

X,Y :α≥(XY ◦A)≥1
r(X) c(Y ) .

An interesting limiting case is whereXY simply has every-
where the same sign asA.

γ∞2 (A) = min
X,Y :(XY ◦A)≥1

r(X) c(Y )

As we did with γ2, we can representγα
2 and γ∞2 as

semidefinite programs and dualize to obtain equivalent max
formulations, which are more useful for proving lower
bounds. We start withγ∞2 as it is simpler.

Theorem 13. LetA be a sign matrix.

γ∞2 (A) = max
Q:Q◦A≥0

‖A ◦Q‖
‖Q‖

.

Notice that this is the same as the definition ofγ2(A)
except for the restriction thatQ ◦ A ≥ 0. We similarly
obtain the following max formulation ofγα

2 .

Theorem 14. LetA be a sign matrix andε ≥ 0.

γ1+ε
2 (A) = max

Q

‖(1 + ε/2)Q ◦A− (ε/2)|Q|‖
‖Q‖

, (7)

where|Q| denotes the matrix whose(x, y) entry is|Q[x, y]|.

Proof. The theorem is obtained by writing the definition of
γα
2 as a semidefinite programming and dualizing. The pri-

mal problem can be written as

min η

X[i, i] ≤ η

X � 0

αF ≥ X ◦ Â ≥ F

Again in a straightforward way we can form the dual of
this program:

max 〈Q1 −Q2, F 〉 − (α− 1)〈Q2, F 〉
Tr(β) = 1

β � (Q1 −Q2) ◦ Â

β, Q1, Q2 ≥ 0 ,

whereβ is a diagonal matrix. Notice that asα → ∞ in
the optimal solutionQ2 → 0 and so we recover the dual
program forγ∞2 .

We can argue that in the optimal solution to this program,
Q1, Q2 will be disjoint. For ifQ1[x, y]−Q2[x, y] = a ≥ 0
then we setQ′1[x, y] = a andQ′2[x, y] = 0 and increase the

objective function. Similarly, ifQ1[x, y]−Q2[x, y] = a <
0 we setQ′1[x, y] = 0 andQ′2[x, y] = −a ≤ Q2[x, y] and
increase the objective function.

Let ε = α − 1. In light of this observation, we can let
Q = Q1 −Q2 be unconstrained and our objective function
becomes〈(1 + ε/2)Q− (ε/2)|Q|, F 〉, as the entrywise ab-
solute value ofQ in our case is|Q| = Q1 + Q2. As with
γ2 above, we can reformulateγα

2 (A) in terms of spectral
norms.

Linial and Shraibman [16] show thatγα
2 can be used to

lower bound quantum communication complexity with en-
tanglement.

Theorem 15(Linial and Shraibman). Let A be a sign ma-
trix, andε ≥ 0. Then

Q∗ε (A) ≥ log γαε
2 (A)− log αε − 2 ,

whereαε = 1
1−2ε

In his seminal result showing anΩ(
√

n) lower bound
on the quantum communication complexity of disjointness,
Razborov [23] essentially used a “uniform” version ofγα

2 .
Namely, ifA is an|X|-by-|Y | matrix, we can in particular
lower bound the spectral norm in the numerator of Equa-
tion (7) by considering uniform unit vectorsx of length
|X| andy of length|Y | wherex[i] = 1/

√
|X| andy[i] =

1/
√
|Y |. Then we have

‖(1 + ε/2)Q ◦A− (ε/2)|Q|‖
≥ xT ((1 + ε/2)Q ◦A− (ε/2)|Q|)y

=
〈(1 + ε/2)Q,A〉 − (ε/2)‖Q‖1√

|X||Y |
,

and so

γ1+ε
2 (A) ≥ max

Q:‖Q‖1=1

〈(1 + ε/2)Q,A〉 − ε/2
‖Q‖

√
|X||Y |

.

Sherstov [25] also uses the same bound in simplifying
Razborov’s proof, giving an extremely elegant way to
choose the matrixQ for a wide class of sign matricesA.

3 Relation ofγ2 to discrepancy

In looking at the definition ofdiscP (A), we see that it is
a quadratic program with quadratic constraints. Such prob-
lems are in general NP-hard to compute. A (now) common
approach for dealing with NP-hard problems is to consider
a semidefinite relaxation of the problem. In fact, Alon and
Naor [1] do exactly this in developing a constant factor ap-
proximation algorithm for the cut norm. While we do not
need the fact that semidefinite programs can be solved in



polynomial time, we do want to take advantage of the fact
that semidefinite programs often have the property of be-
having nicely under product of instances. While not always
the case, this property has been used many times in com-
puter science, for example [17, 6, 5].

As shown by Linial and Shraibman [15], it turns out
that the natural semidefinite relaxations ofdiscP (A) and
disc(A) are given byγ∗2 (A◦P ) and1/γ∞2 (A), respectively.

Theorem 16(Linial and Shraibman). Let A be a sign ma-
trix, andP a probability distribution. Then

1
8
γ∗2 (A ◦ P ) ≤ discP (A) ≤ γ∗2 (A ◦ P )

1
8

1
γ∞2 (A)

≤ disc(A) ≤ 1
γ∞2 (A)

.

4 Product theorems forγ2

In this section, we show thatγ2, γ
∗
2 , andγ∞2 all behave

nicely under the tensor product of their arguments. This,
together with Theorem 16, will immediately give our main
results.

Theorem 17. LetA,B be real matrices. Then

1. γ2(A⊗B) = γ2(A) γ2(B),

2. γ∞2 (A⊗B) = γ∞2 (A) γ∞2 (B),

3. γ∗2 (A⊗B) = γ∗2 (A) γ∗2 (B).

Item (3) has been previously shown by [5]. The follow-
ing easy lemma will be useful in the proof of the theorem.

Lemma 18. Let ‖ · ‖ be a norm on Euclidean space. If for
everyx ∈ Rm, y ∈ Rn

‖x⊗ y‖ ≤ ‖x‖ · ‖y‖ ,

then, for everyα ∈ Rm andβ ∈ Rn

‖α⊗ β‖∗ ≥ ‖α‖∗‖β‖∗ ,

where‖ · ‖∗ is the dual norm of‖ · ‖.

Proof. For a vectorγ denote byxγ a vector satisfying
‖xγ‖ = 1 and

〈γ, xγ〉 = max
x∈Rn,‖x‖=1

〈γ, x〉 = ‖γ‖∗ .

Then, for everyα ∈ Rm andβ ∈ Rn

‖α⊗ β‖∗ = max
x∈Rmn,‖x‖=1

〈α⊗ β, x〉

≥ 〈α⊗ β, xα ⊗ xβ〉
= 〈α, xα〉〈β, xβ〉
= ‖α‖∗‖β‖∗ .

For the first inequality recall that‖xα⊗xβ‖ ≤ ‖xα‖‖xβ‖ =
1.

Now we are ready for the proof of Theorem 17.

Proof of Theorem 17.We will first show items 1 and 2.
To seeγ2(A ⊗ B) ≥ γ2(A)γ2(B), let QA be a matrix

with ‖QA‖ = 1, such thatγ2(A) = ‖A◦QA‖, and similarly
let QB satisfy‖QB‖ = 1 andγ2(B) = ‖B ◦ QB‖. Now
consider the matrixQA⊗QB . Notice that‖QA⊗QB‖ = 1.
Thus

γ2(A⊗B) ≥ ‖(A⊗B) ◦ (QA ⊗QB)‖
= ‖(A ◦QA)⊗ (B ◦QB)‖
= ‖A ◦QA‖ · ‖B ◦QB‖ .

Furthermore, the same proof shows thatγ∞2 (A ⊗ B) ≥
γ∞2 (A)γ∞2 (B) with the additional observation that ifQA ◦
A ≥ 0 andQB ◦B ≥ 0 then(QA ⊗QB) ◦ (A⊗B) ≥ 0.

For the other direction,γ2(A ⊗ B) ≤ γ2(A)γ2(B), we
use the min formulation ofγ2. Let XA, YA be two ma-
trices such thatXAYA = A and γ2(A) = r(XA)c(YA)
and similarly letXB , YB be such thatXBYB = B and
γ2(B) = r(XB)c(YB). Then

(XA ⊗XB)(YA ⊗ YB) = A⊗B

gives a factorization ofA ⊗ B, and r(XA ⊗ XB) =
r(XA)r(XB) and similarlyc(YA ⊗ YB) = c(YA)c(YB).

Furthermore, the same proof also shows thatγ∞2 (A ⊗
B) ≤ γ∞2 (A)γ∞2 (B) with the additional observation that if
XAYA ◦A ≥ 1 andXBYB ◦B ≥ 1 then(XA⊗XB)(YA⊗
YB) ◦ (A⊗B) ≥ 1.

We now turn to item 3. As we have already shown
γ2(A⊗B) ≤ γ2(A)γ2(B), thus by Lemma 18 it suffices to
show thatγ∗2 (A⊗B) ≤ γ∗2 (A)γ∗2 (B).

To this end, letXA, YA be an optimal factorization
for A and similarly XB , YB for B. That is, XT

AYA =
A,XT

BYB = B, the columns ofXA, YA, XB , YB are or-
thogonal, andγ∗2 (A) = ‖XA‖F ‖YA‖F and γ∗2 (B) =
‖XB‖F ‖YB‖F .

Now consider the factorization(XT
A⊗XT

B)(YA⊗YB) =
A ⊗ B. It is easy to check that the columns ofXA ⊗ XB

andYA ⊗ YB remain orthogonal, and so

γ∗2 (A⊗B) ≤ ‖XA ⊗XB‖F ‖YA ⊗ YB‖F

= ‖XA‖F ‖YA‖F ‖XB‖F ‖YB‖F

= γ∗2 (A)γ∗2 (B) .

5 Direct product theorem for discrepancy

Shaltiel showed a direct product theorem for discrepancy
under the uniform distribution as follows:

discU⊗k(A⊗k) = O(discU (A)k/3)



Our first result generalizes and improves Shaltiel’s result to
give an optimal product theorem, up to constant factors.

Theorem 19. For any sign matricesA,B and probability
distributions on their entriesP,Q

discP (A) discQ(B) ≤ discP⊗Q(A⊗B)
≤ 64 discP (A) discQ(B)

Proof. It follows directly from the definition of discrepancy
that

discP (A)discQ(B) ≤ discP⊗Q(A⊗B) .

For the other inequality, we have

discP⊗Q(A⊗B) ≤ γ∗2 ((A⊗B) ◦ (P ⊗Q))
= γ∗2 ((A ◦ P )⊗ (B ◦Q))
= γ∗2 (A ◦ P )γ∗2 (B ◦Q)
≤ 64 discP (A)discQ(B) .

A simple example shows that we cannot expect a perfect
product theorem. LetH be the2-by-2 Hadamard matrix

H =
[

1 1
1 −1

]
,

which also represents the communication problem inner
product on one bit. It is not too difficult to verifydisc(H) =
discU (H) = 1/2, whereU represents the uniform distri-
bution. On the other handdiscU⊗U (H ⊗ H) ≥ 5/16 as
witnessed by the vectorx = [1, 1, 1, 0].

Shaltiel also asked whether a direct product theorem
holds for general discrepancydisc(A) = minP discP (A).
The function inner product can also be used here to show we
cannot expect a perfect product theorem. As stated above,
for the inner product function on one bit,disc(H) = 1/2.
Thus if discrepancy obeyed a perfect product theorem, then,
disc(H⊗k) = 2−k. On the other hand,γ∞2 (H⊗k) =
2k/2—for the upper bound look at the trivial factorization
IH⊗k, and for the lower bound take the matrixQ to be
H⊗k itself. Thus we obtain a contradiction for sufficiently
largek asγ∞2 (A) and1/disc(A) differ by at most a multi-
plicative factor of8.

Our next theorem shows that this example is nearly the
largest violation possible.

Theorem 20. LetA,B be sign matrices. Then

1
8

disc(A) disc(B) ≤ disc(A⊗B) ≤ 64 disc(A) disc(B) .

Proof. By Theorem 16 and Theorem 17 we have

disc(A⊗B) ≤ 1
γ∞2 (A⊗B)

=
1

γ∞2 (A)γ∞2 (B)
≤ 64 disc(A)disc(B) .

Similarly,

disc(A⊗B) ≥ 1
8

1
γ∞2 (A⊗B)

=
1
8

1
γ∞2 (A)γ∞2 (B)

≥ 1
8
disc(A)disc(B) .

These two theorems taken together mean that for a tensor
productA⊗B there is a tensor product distributionP ⊗Q
that gives a nearly optimal bound for discrepancy. We state
this as a corollary:

Corollary 21. LetA,B be sign matrices. Then

1
512

discP⊗Q(A⊗B) ≤ disc(A⊗B)

≤ 64 discP⊗Q(A⊗B) ,

whereP is the optimal distribution fordisc(A) andQ is the
optimal distribution fordisc(B).

5.1 Applications

Now we discuss some applications of our product theo-
rem for discrepancy. We first show how our results give a
strong XOR lemma in distributional complexity, for bounds
shown by the discrepancy method.

Theorem 22. Let f : X × Y → {0, 1}n be a Boolean
function andP a probability distribution overX × Y . If
Corrc,P (Mf ) ≤ w is proved by the discrepancy method
(Fact 5), then

Corrkc,P⊗k(M⊗k
f ) ≤ (8w)k .

Proof. By generalizing Theorem 19 to tensor products of
more matrices,

Corrkc,P⊗k(M⊗k
f ) ≤ 2kcdiscP⊗k(M⊗k

f )

≤ 2kc(8 · discP (Mf ))k

≤ (8 · 2cdiscP (Mf ))k .

Viola and Wigderson (Proposition 1.1 in [27]) show
quite generally that upper bounds on the correlation an algo-
rithm obtains withf⊗k imply upper bounds on the success
probability an algorithm obtains in computing the vector of
solutionsf (k). This gives us the following corollary.



Corollary 23. Let f : X × Y → {0, 1}n be a Boolean
function andP a probability distribution overX × Y . If
Corrc,P (Mf ) ≤ w is proved by the discrepancy method
(Fact 5), then the success probability under distribution
P (k) of anykc/3 bit protocol computing the vector of so-
lutionsf (k) satisfies

Succkc/3,P⊗k(f (k)) ≤ (8w)k .

This is a strong direct product theorem as even withk/3
times the original amountc of communication, the success
probability still decreases exponentially. Note, however,
that we can only show this for bounds shown by the discrep-
ancy method. Indeed, Shaltiel’s counter-example shows
that some assumptions on the functionf are necessary in
order to show a strong direct product theorem for the distri-
butional complexity off .

For weakly-unbounded error protocols, on the other
hand, we can show an unconditional direct sum theorem.
This follows from our product theorem plus results of
Klauck (stated in our Theorem 7) which show that discrep-
ancy captures the complexity of weakly-unbounded error
protocols.

Theorem 24. Let fi : {0, 1}n × {0, 1}n → {0, 1} be
Boolean functions, for1 ≤ i ≤ k. Then

UPC

(
k⊕

i=1

fi

)
≥ 1

3

(
k∑

i=1

UPC(fi)

)
− k

3
log n−O(1) .

Similarly one also obtains direct sum results for lower
bounds on randomized or quantum communication com-
plexity with entanglement that are shown via the discrep-
ancy method.

5.2 Connections to recent work

There have been several recent papers which discuss is-
sues related to those here. We now explain some of the
connections between our work and these results.

Viola and Wigderson [27] study direct product theorems
for, among other things, multi-party communication com-
plexity. For the two-party case, they are able to recover
Shaltiel’s result, with a slightly worse constant in the ex-
ponent. The quantity which they bound is correlation with
two-bit protocols, which they remark is equal to discrep-
ancy, up to a constant factor. One may compare this with
the infinity-to-one norm, as the maximum correlation of a
sign matrixA with a two-bit simultaneousprotocol under
distributionP is exactly‖A ◦ P‖∞→1.

The infinity-to-one norm also plays an important role in
a special class of two-prover games known as XOR games.
Here the verifier wants to evaluate some functionf : X ×
Y → {−1, 1}, and with probabilityP [x, y], sends question

x to Alice and questiony to Bob. The provers Alice and Bob
are all powerful, but cannot communicate. Alice and Bob
send responsesax, by ∈ {−1, 1} back to the verifier who
checks ifax · by = f(x, y). Here we see that a strategy of
Alice is given by a sign vectora of length|X|, and similarly
for Bob. Thus the maximum correlation the provers can
achieve withf is

max
a∈{−1,1}|X|,b∈{−1,1}|Y |

aT (Mf ◦ P )b ,

which is exactly‖Mf ◦ P‖∞→1.
Two-prover XOR games have also been studied where

the provers are allowed to share entanglement. In this
case, results of Tsirelson [26] show that the best correla-
tion achievable can be described by a semidefinite program
[4]. In fact, the best correlation achievable by entangled
provers under distributionP turns out to be given exactly
byγ∗2 (Mf ◦P ). In studying a parallel repetition theorem for
XOR games with entanglement, [5] have already shown, in
our language, thatγ∗2 (A⊗B) = γ∗2 (A)γ∗2 (B).

This connection to XOR games also gives another pos-
sible interpretation of the quantityγ∞2 (A). The best corre-
lation the provers can achieve withMf under the “hardest”
probability distributionP is given by1/γ∞2 (A).

Finally, inspired by the work of [5], Mittal and Szegedy
[19] began to develop a general theory of when semidefi-
nite programs obey a product theorem. They give a general
condition which captures many instances of semidefinite
progam product theorems in the literature, includingγ2 and
γ∗2 , but that does not handle programs with non-negativity
constraints likeγ∞2 . Lee and Mittal [13] extend this work to
also include programs with non-negativity constraints like
γ∞2 and the semidefinite relaxation of two-prover games
due to Feige and Lov́asz [6].

6 Conclusion

We have shown a tight product theorem for discrepancy
by looking at semidefinite relaxation of discrepancy which
gives a constant factor approximation, and which composes
perfectly under tensor product. With the great success of
semidefinite programming in approximation algorithms we
feel that such an approach should find further applications.

Many open questions remain. Can one show a product
theorem forγα

2 ? We have only been able to show a very
weak result in this direction:

γ
1+ε2/(2(1+ε))
2 (A⊗A) ≥ γ1+ε

2 (A)γ1+ε
2 (A)

Finally, an outstanding open question which remains is if
a direct product theorem holds for the randomized commu-
nication complexity of disjointness. Razborov’s [22] proof
of theΩ(n) lower bound for disjointness uses a one-sided



version of discrepancy under a non-product distribution.
Could a similar proof technique apply by first characteriz-
ing one sided discrepancy as a semidefinite program?
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